Criterium for the index theorem on the lattice
نویسنده
چکیده
We study how far the Index Theorem can be extrapolated from the continuum to finite lattices with finite topological charge densities. To examine how the Wilson action approximates the Index theorem, we specialize in the lattice version of the Schwinger model. We propose a new criterion for solutions of the Ginsparg-Wilson Relation constructed with the Wilson action. We conclude that the Neuberger action is the simplest one that maximally complies with the Index Theorem, and that its best parameter in d = 2 is m0 = 1.1±0.1 .
منابع مشابه
A Criterium for the Index Theorem on the Lattice with the Ginsparg Wilson Relation
The Ginsparg Wilson Relation and the Neuberger action recently improved the understanding of the Index Theorem on the lattice, however this problem has not been solved yet. With the presently available criteria, we develop a technique based on the position of roots and poles to build a new simple solution of the Ginsparg Wilson Relation. In the free fermion case, we study the roots, the poles, ...
متن کاملrepresentation theorems of $L-$subsets and $L-$families on complete residuated lattice
In this paper, our purpose is twofold. Firstly, the tensor andresiduum operations on $L-$nested systems are introduced under thecondition of complete residuated lattice. Then we show that$L-$nested systems form a complete residuated lattice, which isprecisely the classical isomorphic object of complete residuatedpower set lattice. Thus the new representation theorem of$L-$subsets on complete re...
متن کاملON THE SYSTEM OF LEVEL-ELEMENTS INDUCED BY AN L-SUBSET
This paper focuses on the relationship between an $L$-subset and the system of level-elements induced by it, where the underlying lattice $L$ is a complete residuated lattice and the domain set of $L$-subset is an $L$-partially ordered set $(X,P)$. Firstly, we obtain the sufficient and necessary condition that an $L$-subset is represented by its system of level-elements. Then, a new representat...
متن کاملThe Remak-Krull-Schmidt Theorem on\ Fuzzy Groups
In this paper we study a representation of a fuzzy subgroup $mu$ of a group $G$, as a product of indecomposable fuzzy subgroups called the components of $mu$. This representation is unique up to the number of components and their isomorphic copies. In the crisp group theory, this is a well-known Theorem attributed to Remak, Krull, and Schmidt. We consider the lattice of fuzzy subgroups and som...
متن کاملUniform connectedness and uniform local connectedness for lattice-valued uniform convergence spaces
We apply Preuss' concept of $mbbe$-connectedness to the categories of lattice-valued uniform convergence spaces and of lattice-valued uniform spaces. A space is uniformly $mbbe$-connected if the only uniformly continuous mappings from the space to a space in the class $mbbe$ are the constant mappings. We develop the basic theory for $mbbe$-connected sets, including the product theorem. Furtherm...
متن کامل